Intracellular acetyl unit transport in fungal carbon metabolism.
نویسندگان
چکیده
Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming acetyl-carnitine, which can be transported between subcellular compartments. Citrate synthase catalyzes the condensation of oxaloacetate and acetyl-CoA to form citrate that can be transported over the membrane. Since essential metabolic pathways such as fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle are physically separated into different organelles, shuttling of acetyl units is essential for growth of fungal species on various carbon sources such as fatty acids, ethanol, acetate, or citrate. In this review we summarize the current knowledge on the different systems of acetyl transport that are operational during alternative carbon metabolism, with special focus on two fungal species: Saccharomyces cerevisiae and Candida albicans.
منابع مشابه
Carnitine-dependent transport of acetyl coenzyme A in Candida albicans is essential for growth on nonfermentable carbon sources and contributes to biofilm formation.
In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid beta-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransfera...
متن کاملRole of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans.
The flow of carbon metabolites between cellular compartments is an essential feature of fungal metabolism. During growth on ethanol, acetate, or fatty acids, acetyl units must enter the mitochondrion for metabolism via the tricarboxylic acid cycle, and acetyl coenzyme A (acetyl-CoA) in the cytoplasm is essential for the biosynthetic reactions and for protein acetylation. Acetyl-CoA is produced ...
متن کاملRole of acetyl coenzyme A synthesis and breakdown in alternative carbon source utilization in Candida albicans.
Acetyl coenzyme A (acetyl-CoA) is the central intermediate of the pathways required to metabolize nonfermentable carbon sources. Three such pathways, i.e., gluconeogenesis, the glyoxylate cycle, and beta-oxidation, are required for full virulence in the fungal pathogen Candida albicans. These processes are compartmentalized in the cytosol, mitochondria, and peroxosomes, necessitating transport ...
متن کاملProfiling of Cytosolic and Peroxisomal Acetyl-CoA Metabolism in Saccharomyces cerevisiae
As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA) plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport be...
متن کاملAch1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase.
Acetyl-coenzyme A (acetyl-CoA) is not only an essential intermediate in central carbon metabolism, but also an important precursor metabolite for native or engineered pathways that can produce many products of commercial interest such as pharmaceuticals, chemicals or biofuels. In the yeast Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eukaryotic cell
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2010